TNV Series COMMON RAIL
EPA tier 4 (19-56kW) EU Stage IIIB (37-56 kW)

Call for Yanmar solutions
We wish for a **Blue Sky in the Future.**

Lessening the environmental load, coexisting with nature – the entire world shares this grand theme. Diesel engines may be necessary for many industries, but they also need to be kind to the environment. Yanmar uses the trust in its technology and flexibility of ideas, formed over a century, to develop powerful and clean diesel engines for the new generation that meet the strictest environmental regulations.

To protect our beautiful blue skies, we continue to refine our technology to contribute to the future of Earth and humanity.
100 Years of Milestones

Yanmar’s history started with the wishes of its founder, Magokichi Yamaoka, that he could help make the back-breaking work of farming even a little easier, and that not one drop of fuel be wasted. This led to the development of the HB-Type, the world’s first small horizontal water-cooled diesel engine in an era in which there were only large ones. Our leading technology and the Yanmar Spirit of always responding to the needs of the times have been passed down for the century since our founding.

Yanmar products, with their uniquely creative technology, are now found supporting all sort of industrial fields around the world, whether on farms, in cities, or on the high seas.

March 22, 1912
Yamaoka Hatsudoki Kosakusho (Engine Manufacturing Company) founded in Osaka city, selling gas motors and suction-type gas motors.

December 23, 1933
HB-Type
3.7-4.5kW (5-6hp)
The world’s first small horizontal water-cooled diesel engine

1952
K1-Type
1.1-1.5kW (1.5-2hp)
The world’s smallest four-cycle horizontal water-cooled diesel engine

1965
F(E) Series
3.0-8.9kW (4.1-12hp)
YANMAR’s first vertical water-cooled diesel engine

1968
2W90
10.4-14.9kW (14.2-20hp)
YANMAR’s first direct injection (DI) vertical water-cooled diesel engine

1980
3TN95/4TN95(T)
33.6-63.4kW (45-85hp)
The world’s smallest and lightest air-cooled diesel engine

1983
L Series
3.0-6.7kW (4-9hp)
Research & Development

Yanmar operates a diverse R&D program as we seek to create ever-more efficient and ever-more clean-burning diesel engines. Using our own unique technology as a starting-point, we add in the latest in advanced technology to comply with EPA Tier4 / EU Stage IIIIB nonroad diesel engine emissions regulations.
YANMAR TNV Clean Diesel Technologies

- Direct injection to create clean-burning power
- Common rail system to allow fine-tuned electronic control of fuel injection
- Cooled EGR (Exhaust Gas Recirculation) to reduce nitrogen oxides (NOx)
- Diesel Particulate Filter (DPF*) to catch particulate matter (PM) in the exhaust gas
- Fully-electronic control to provide total intelligent engine control

* "DPF" is the filter device designed to remove particulate matter (PM) from exhaust gas.
Common Rail Injection System

High-pressure fuel is stored in the common rail, and the amount, frequency, and timing of fuel injection are precisely controlled electronically in 1/1,000th of a second intervals. Using a high pressure multi-stage injection system, we can reduce the amount of nitrogen oxides (NOx) and particulate matter (PM) contained in the exhaust gas and achieve a quiet, fuel-efficient engine.

Fuel Injection Patterns of Common Rail

- NOx and noise reduction
- Power resource
- PM reduction
- After treatment
- Noise reduction & cold start improvement
Cooled EGR (Exhaust Gas Recirculation) System

This is a system to recirculate some of the exhaust gas back into the air intake. This lets us reduce NOx emission by controlling the oxygen concentration in the combustion chamber and reducing the combustion temperature. The circulated exhaust gas is cooled by the EGR Cooler and also has its flow volume electronically controlled by the EGR Valve, depending on the engine operation state, in order to attain the optimum combustion conditions.
Diesel Particulate Filter (DPF) System

Our engines include a DPF system to catch particulate matter (PM) contained in the exhaust gas. The PM trapped inside the DPF is processed when the DPF automatically regenerates, keeping the filter constantly clean.

- Yanmar’s original DPF regeneration control combines three modes

 [Assist Regeneration]
 When the particulate matter (PM) is trapped in the DPF, the intake throttle valve operates automatically. By reducing the intake air volume and controlling the temperature inside the DPF, the collected particles are automatically eliminated.

 [Reset Regeneration]
 Following combustion in the cylinder, a small amount of fuel is burnt, and the reaction heat from DOC is used to control the temperature in the DPF and automatically eliminate the collected particles.

 [Stationary Regeneration]
 The operator can also use manually control when to eliminate the particles collected in the DPF.
ECU (Engine Control Unit)

The ECU is the brain of an engine, and constantly exchanges information between the engine itself and the operating machinery to accurately determine operation status and provide optimum control for the situation.

SMARTASSIST-Direct

SMARTASSIST-Direct is Yanmar’s standard service tool for electronically-controlled products, and allows the engine operation history information and control system operation status to be easily checked.

Wide Range Application

Construction Agriculture Material Handling
Specification

<table>
<thead>
<tr>
<th>Model</th>
<th>3TNV88C</th>
<th>3TNV86CT</th>
<th>4TNV88C</th>
<th>4TNV86CT</th>
<th>4TNV98C</th>
<th>4TNV98CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Regulation</td>
<td>EPA Tier4</td>
<td>EU Stage III B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combustion System</td>
<td>Direct Injection (DI)</td>
<td>Cooled EGR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspiration</td>
<td>Natural Aspirated</td>
<td>Turbocharged</td>
<td>Natural Aspirated</td>
<td>Turbocharged</td>
<td>Natural Aspirated</td>
<td>Turbocharged</td>
</tr>
<tr>
<td>Fuel Injection System</td>
<td>Common Rail</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinders</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Bore (mm)</td>
<td>88</td>
<td>86</td>
<td>88</td>
<td>86</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>Stroke (mm)</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>Displacement (L)</td>
<td>1.642</td>
<td>1.568</td>
<td>2.190</td>
<td>2.091</td>
<td>3.319</td>
<td>3.319</td>
</tr>
<tr>
<td>Max Rated Output (Gross)/speed*</td>
<td>kW/min-1 (hp/min-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27.5/3,000 (36.9/3,000)</td>
<td>32.4/3,000 (43.4/3,000)</td>
<td>35.5/3,000 (47.6/3,000)</td>
<td>44.0/3,000 (59.0/3,000)</td>
<td>51.7/2,500 (69.3/2,500)</td>
<td>53.7/2,500 (72.0/2,550)</td>
</tr>
<tr>
<td>After Treatment System</td>
<td>Diesel Particulate Filter (DPF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length (mm)</td>
<td>781</td>
<td>781</td>
<td>871</td>
<td>890</td>
<td>970</td>
<td>970</td>
</tr>
<tr>
<td>Width (mm)</td>
<td>536</td>
<td>536</td>
<td>524</td>
<td>543</td>
<td>556</td>
<td>574</td>
</tr>
<tr>
<td>Height (mm)</td>
<td>751</td>
<td>752</td>
<td>746</td>
<td>766</td>
<td>806</td>
<td>820</td>
</tr>
<tr>
<td>Dry Weight (kg)</td>
<td>170</td>
<td>175</td>
<td>205</td>
<td>210</td>
<td>270</td>
<td>275</td>
</tr>
</tbody>
</table>

1 Conforms to SAE J1995

2 With Diesel Particulate Filter (DPF) on flywheel housing

All specification data is subject to change without notice.

YANMAR - To conserve fuel is to serve mankind